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ABSTRACT:The objective of this study was to 

developan artificial neural network classifier to 

discriminatebetweeninfectedandhealthyleaveswitht

hefungusC. 

lindemuthianumatanearlystageofinfection, 

usingleafreflectance data. The 

electromagneticspectrumwasdividedintofivespectra

l bands. In each band wasmade a principal 

componentanalysisandwiththefirst principal 

componentweregeneratedthe scores ofeachspectral 

band. Artificial neural networks 

havebeentestedwithvarious input variables: 

hyperspectralandmultispectralvegetation indexes 

andvaluesof scores ofeachspectral band. 

Threecultivarsof common 

beanandthreelevelsofseveritywereused. The 

vegetationindicesusedwerenormalizeddifferenceve

getation index (NDVI), differencevegetation index 

(DVI), greennormalizeddifferencevegetation index 

(GNDVI), modifiedchlorophyllabsorption in 

reflectance index (MCARI), 

relativedifferencevegetation index (RDVI) 

andtransformedchlorophyllabsorptionreflectance 

index (TCARI). The most eficiente 

classifierusedthe DVI multispectral index as input 

variableandtwoneurons in thehiddenlayer. 

Thisclassifierobtained Kappa coefficientof 32% 

and overall accuracyof 79%. The 

classifierdetectedanthracnosethreedaysbeforethefirs

tcharacteristicsymptomsbecomevisible in the three 

beancultivars. 

KEYWORDS: Remote sensing, reflectance, 

anthracnose, common beans, disease. 

 

I. INTRODUCTION 
In Brazil, the common bean (Phaseolus 

vulgaris) is cultivated throughout the year and 

several factors limit or reduce its production. The 

occurrence of diseases is one of the main causes of 

reduced productivity [12]. Among the main 

common bean diseases, anthracnose, caused by the 

fungus Colletotrichum lindemuthianumstands out 

[22]. 

Control of anthracnose is done using 

resistant cultivars. However, these cultivars may 

have lower agronomic characteristics than 

susceptible ones, mainly in terms of yield potential. 

Thus, one of the main anthracnose control 

measures is the application of fungicides [12]. It is 

recommended that the fungicide be applied when 

the first symptoms of the disease appear. 

Anthracnose is a disease that appears in small areas 

of the bean crop and over time it spreads 

throughout the entire plantation. Thus, it is 

necessary to develop techniques capable of 

identifying the initial stages of infection of the 

disease. Having determined the places where the 

first foci of infection occur, it is possible to apply 

the fungicide at a variable rate, which can promote 

greater savings and less damage to the 

environment. 

Among the technologies used in precision 

agriculture, remote sensing has shown to be very 

promising in identifying diseases in the early stages 

of infection. [20] used reflectance data to detect 

and classify, at early stages of infection, three 

fungal beet diseases. [14] used spectral responses 

and vegetation indices in beet crops, detailing the 

progress of diseases observed at the level of 

cellular structure of the leaf. 

Hyperspectral measurements present 

hundreds of reflectance measurements at different 

wavelengths, the use of multivariate statistical 

techniques makes it possible to reduce the number 

of wavelengths, without significant loss of 

information and without compromising the spectral 

characterization of the target [23][13]. There are 

several techniques of multivariate statistics for 

dimensional reduction. However, estimating the 

number of samples as a function of the number of 
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variables is a difficult task [21]. There are authors 

who suggest that the number of samples vary from 

2 to 20 times the number of variables [10][21]. 

A multivariate technique widely used to 

reduce the dimensionality of data and select 

variables is principal component analysis (PCA). 

[1] used ACP to reduce the number of original 

variables and determine four wavelength intervals 

of the electromagnetic spectrum: 500–533 nm, 

560–675 nm, 682–733 nm and 927–931 nm, which 

allowed to discriminate wheat plants infected with 

fusarium with an accuracy of 91%, before the first 

symptoms became visible. 

Vegetation indices (VI) are used to 

estimate vegetation parameters. IVs are algebraic 

operations between reflectance values involving 

two or more spectral bands. Its objective is to 

extract and expand information about vegetation. 

[20] used eight IVs to aid in the early detection of 

three fungal diseases in beet plants. [29] used IVs 

to determine early stress in soybean plants caused 

by the use of glyphosate. 

This study aimed to: (1) select the most 

representative IVs of the total variance of the data, 

which will be used as input variables for the 

classifier; (2) develop and compare artificial neural 

network classifiers to discriminate leaves infected 

with anthracnose. 

 

II. MATERIAL AND METHODS 
The experiments were conducted in a 

greenhouse, from October to December 2013, with 

a temperature of 24 ± 1 
o
C and relative humidity of 

80 ± 5%, in the city of Viçosa, latitude 20º 45' 14'' 

South and longitude 42º 52' 55'' West, in the state 

of Minas Gerais. To collect the spectral responses 

of bean leaves, experiments were conducted using 

three bean cultivars representing three commercial 

groups: carioca (cv. Rudá), preto (cv. Supremo) 

and vermelho (cv. Vermelhinho), given the 

economic importance of each group and 

susceptibility to anthracnose. In each pot, two 

plants were grown in 0.415 L of substrate 

(Tropstrato HT©, Vida Verde, Mogi Mirim, SP, 

Brazil). 

One experiment was carried out for each 

cultivar. the delineation. The experimental design 

was completely randomized, with four 

concentrations of conidia/mL [zero (control), 1.2 x 

10
4
 (low), 1.2 x 10

5
 (medium) and 1.2 x 10

6
 (high) 

conidia/mL], with six replicates. The experiment 

was repeated from January to March 2014. 

 

 

 

Inoculation With Colletotrichum 

Lindemuthianum 

The inoculum of C. lindemuthianum, race 

65, obtained at the Institute of Biotechnology 

Applied to Agriculture (BIOAGRO/UFV), was 

multiplied in test tubes containing sterilized pods 

and partially immersed in agar agar medium. The 

tubes were kept for approximately ten days at 24 ± 

1 
o
C, for the production of conidia. In a 

greenhouse, 30 seeds of each common bean 

cultivar were sown in styrofoam trays (68 x 35 cm) 

with 128 cells. Four days after planting most seeds 

germinated. Six days after planting, the bean plants 

were transplanted into plastic pots. Inoculation was 

performed three days after transplanting the 

seedlings into plastic pots, atomizing the conidial 

suspension on both surfaces of the primary leaves, 

with the aid of a manual atomizer. 

Plants were evaluated daily after inoculation, based 

on the 1 to 9 scale described by [15], in which: 1 = 

absence of symptoms; 2 = up to 1% of the veins 

showing necrotic spots, perceptible only on the 

abaxial side of the leaf; 3 = higher frequency of 

foliar symptoms described in the previous grade, 

up to 3% of affected veins; 4 = up to 1% of the 

veins showing necrotic spots, noticeable on both 

sides of the leaves; 5 = higher frequency of foliar 

symptoms described in the previous grade, up to 

3% of veins affected; 6 = necrotic spots on the 

veins, noticeable on both sides of the leaves, 

presence of some lesions on the stem, branches and 

petioles; 7 = necrotic patches on most of the veins 

and much of the adjacent mesophyll tissue that 

ruptures; presence of abundant lesions on the stem, 

branches and petioles; 8 = necrotic spots on almost 

all of the veins, causing rupture, defoliation and 

reduced plant growth; abundant lesions on the 

stem, branches and petioles; and 9 = most plants 

dead. 

 

Measurement Of Spectral Responses Of 

Common Bean Leaves 

In each pot, four fully developed leaves 

were chosen for spectral reflectance measurements, 

made daily after inoculation until complete leaf 

fall, in the same period of the day, between 10:00 

and 14:00 h. During the experiment, 2,342 

reflectance measurements were performed, 555 of 

which were from healthy plants and 1,787 from 

infected plants. 

Leaf spectral reflectance was measured 

with the ASD FieldSpec Pro FR spectroradiometer 

(Analytic Spectral Devices, Boulder, USA), with 

the “plant probe” probe for leaf contact 

measurements. This probe has an integrated 100 W 

halogen lamp, which was turned on 90 minutes 
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before each data collection for its stabilization. The 

spectroradiometer has a spectral range between 350 

- 1100 nm and the useful reading range was 

between 400 and 900 nm, discarding noisy spectral 

data at the extremes. Calibration of the 

spectroradiometer using the blank reference, with a 

Spectralon plate (Labsphere, North Sutton, USA), 

was performed at the beginning of each data 

collection and then at regular intervals of 15 

minutes. The measurement time for each reading 

was adjusted to 544 ms, and each reflectance 

collection, on each leaf, was the average of 10 

readings taken by the spectroradiometer. 

 

CLASSIFIER DEVELOPMENT 

The original data had a large number of 

variables (751 wavelengths) in relation to the 

number of repetitions (2342 repetitions). There are 

literatures that recommend at least 20 repetitions 

per measured variable [10][21]. To reduce the 

number of variables, the original data set was 

divided into five spectral bands, according to the 

spectral bands of the RapidEye satellites (Table 1). 

The use of these five spectral bands was 

due to the direct relationship that each band has 

with constituent parts of bean leaves. In the visible 

spectrum (380-760 nm), the change in the spectral 

response of the leaf is due to the variation in the 

content of organelles, such as carotenoids and 

chlorophyll. And in the near infrared (760–1,200 

nm), variations in spectral responses are due to 

variations in the physical structure of the leaf, such 

as water content [1]. 

As in the same spectral band there is a 

strong correlation between the variables, this makes 

it possible to apply PCA in each band to reduce the 

dimensionality of the data. PCA generates new, 

uncorrelated variables called principal components. 

Most of the variance of the original data is 

expected to be retained in a few principal 

components. With these principal components, 

scores were calculated for each sample of the data 

set for each band. These score values were the 

characteristics used as input vectors for the 

artificial neural network (ANN). Before performing 

principal component analysis, all data were mean-

centered. Thus, each variable has zero mean, that 

is, the coordinates are moved to the center of the 

data,allowing differences in the relative intensities 

of the variables to be easier to perceive [25]. 

 

Table 1. Spectral bands with their respective wavelength ranges and number of variables 

Spectral bands Wavelength range (nm) Number of variables 

Blue 440 – 510 70 

Green 520 – 590 70 

Red 630 – 685 55 

Red edge 690 – 730 40 

Near infrared 760 – 850 90 

 

With the reflectance data of healthy and 

infected leaves, Manova and Hotelling's T
2
 mean 

test were performed to verify whether the 

separation between the classes of interest was 

significant, at the 5% level of significance. 

Multivariate analysis of variance 

(Manova) was performed to verify whether there 

was a significant difference between treatments, 

using the Wilks criterion. 

 

VEGETATION INDICES 

Six vegetation indices common to 

hyperspectral and multispectral spectrometry were 

calculated (Table 2), given by: Normalized 

Difference Vegetation Index – NDVI [19]; Green 

Normalized Difference Vegetation Index – GNDVI 

[27]; Difference Vegetation Index – DVI [26]; 

Modified Chlorophyll Absorption Reflectance 

Index – MCARI [7]; Transformed Chlorophyll 

Absorption Reflectance Index – TCARI [9]; 

Relative Difference Vegetation Index – RDVI [18]. 

The blue (B), green (G), red (R), rededge 

(RE) and near infrared (NIR) spectral bands for 

calculating the multispectral indices were obtained 

by determining the average reflectance within each 

wavelength range. 

 

Table 2. Plant indices used in hyperspectral and multispectral data 

Indices Hyperspectral Multispectral 

NDVI  R800 − R670 / R800 + R670  (NIR - R) / (NIR + R) 

DVI R800 − R680  NIR - R 

GNDVI  R800 − R550 / R800 + R550  (IR - G) / (IR + G) 
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MCARI 
  R700 − R670 − 0.2 R700

− R550  . R700/R670  
[(RE - R) –0.2(RE - G)].RE/R 

RDVI  NDVI. DVI  NDVI. DVI 

TCARI 
3  R700 − R670 − 0.2 R700

− R550 .  R700/R670   
3[(RE - R) –0.2(RE - G).(RE/R)] 

Rx = Reflectance value at wavelength x; R = red reflectance; G = reflectance in green; RE = red-edge 

reflectance; NIR = Near Infrared Reflectance. 

 

ARCHITECTURE OF ANNS 

In this work, Multi-Layer Perceptron 

(MLP) ANNs were trained to classify common 

bean leaves using reflectance data. The ANNs were 

trained using the ANN tools package of the Matlab 

computational program (MathWorks, Natick, 

USA). Different ANN architectures were tested. 

The spectral band score values were tested, 

individually and combined, as feature vectors used 

as input to the ANN. 

The six hyperspectral and multispectral 

IVs were tested, individually and combined, as 

classifier input variables. All ANN architectures 

were tested with one and two intermediate layers 

and two neurons in the output layer (two classes: 

healthy and infected). For ANNs with two 

intermediate layers, the numbers of neurons tested, 

both in the first and in the second layer were: 2, 4, 

6, 8 and 10. For ANNs with only one intermediate 

layer, the number of neurons tested ranged from 1 

to 25. The activation function of the first and 

second hidden layers was the hyperbolic tangent 

and the output layer was the sigmoid. The error 

backpropagation algorithm was used, with the 

variation proposed by Levenberg-Marquardt [8]. 

Three types of feature vectors used as input in the 

ANN were tested: 

 

1) The spectral bands score values tested 

individually and combined; 

2) The six hyperspectral IVs tested individually and 

in combination; 

3) The six multispectral IVs tested individually and 

in combination. 

 

The best ANN architecture was the one with the 

highest Kappa coefficient value. To evaluate the 

difference between two Kappa indices, the Z test 

was used, according to [5], at a significance level 

of 5%. 

 

TRAINING, VALIDATION AND TESTING 

OF ANNS 

The dataset of 2342 samples was divided 

into: 1390 for network training, 478 for validation 

and 474 for testing. All datasets were chosen so 

that reflectance measurements of healthy and 

infected leaves would be present. The “early stop” 

method, described by [11], was used to stop ANN 

training. This method uses the validation set to 

interrupt the update of the free ANN parameters 

during training and, thus, avoid overfitting the data 

(“overfitting”). During training, mean squared error 

(MSE) is calculated with the training vectors and 

with validation vectors. Training is stopped when 

the validation NDE starts to increase [11]. The 

number of iterations used to confirm the NDE 

increase trend depends on the problem [17], and in 

the present work ten iterations were used. 

At the beginning of training, the ANN 

parameters are randomly generated and these 

values can influence the final training result. In this 

way, each architecture was trained ten times. 

Among these ten trained ANNs, the one with the 

highest Kappa index with the test sample was 

chosen. To evaluate the difference between two 

Kappa indices, the Z test was used, according to 

[5], with a significance level of 5%. From this test 

set it was possible to construct the classification 

confusion matrix and determine the Kappa index 

[4][24] to evaluate the performance of the ANN 

classification. 

 

EARLY DETECTION OF ANTHRACNOSE 

For the detection of anthracnose, before its 

first symptoms became visible, the ANN that 

statistically presented the highest Kappa index was 

used. A dataset with 24 samples of healthy plants 

and 20 samples of infected plants was used for each 

level of infestation, totalling 84 samples. The 

samples from this dataset were not part of the ANN 

training, validation or test set. 

 

III. RESULTS AND DISCUSSION 
DISEASE DEVELOPMENT 

Common bean plants not inoculated with 

the pathogen (control) remained healthy throughout 

the data collection period. The inoculated plants 

remained without showing any characteristic 

symptoms of anthracnose during the latency period 

of the disease. 
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TEST BETWEEN VECTORS OF CLASS 

MEANS 

The difference between the mean classes 

of infected and healthy leaves was significant at the 

5% probability level by Hotelling's T
2
 test (Table 

3). This shows that the development of a classifier 

to discriminate between the two classes can be 

feasible. Manova tests were significant for 

treatments (Ʌ = 0.0002, F = 4.24 and p < 0.0001). 

 

Table 3. Calculated F value (Fc) for Hotelling's T
2
 test, to compare means of infected or healthy leaves 

 Hotelling’s T
2
 Fc 

Value 5.51 1.10 

Fc = calculated value of the F statistic corresponding to Hotelling's T
2
 statistic. 

 

PRINCIPAL COMPONENT ANALYSIS 

The PC1 of each band retained at least 

88.9% of the total data variance (Table 4). With 

PCA, there was a reduction of 751 original 

variables to five new independent variables – five 

main components, retaining more than 88% of the 

total variance of the original data. With these main 

components, the scores of each band were 

generated. These score values were used as ANN 

input vectors. 

 

Table 4. Values, in percentage, of data variance retained by the first principal component (PC1) of each spectral 

band 

 Blue band Green band Red 

band 

Red edge band Near infrared band 

PC1 88.9 99.3 96.2 94.1 98.9 

 

Visual Classification Of Anthracnose 

The results of the daily visual assessments 

were based on the scale proposed by Pastor-

Corrales (1992) (Table 5). For cv. Rudá, the first 

symptoms of anthracnose became visible from the 

fourth DAI onwards and by the ninth DAI all the 

plants were dead. In cv. Supreme, the characteristic 

symptoms of anthracnose became visible from the 

third DAI onwards, reaching a score of 1.1 and on 

the seventh DAI the average score was 8.6, 

indicating the susceptibility of this cultivar to the 

disease. In the eighth DAI all bean plants were 

dead. In cv. Vermelhinho, the first symptoms of the 

disease became visible in the third DAI, and in the 

tenth DAI the average of the scores was 8.7 and in 

the eleventh DAI all the plants were dead. Among 

the three cultivars studied, all were susceptible to 

anthracnose, however, in cv. Vermelhinho the 

evolution of the infection was slower than in 

cultivars Rudá and Supremo. 

 

Table 5. Mean severity of anthracnose in the three common bean cultivars in relation to the number of days 

after inoculation (DAI) of the pathogens 

Cultivars 
DAI 

1 2 3 4 5 6 7 8 9 10 11 

Rudá 1.0 1.0 1.0 1.3 2.3 3.9 8.1 8.4 - - - 

RBS 

Supremo 

1.0 1.0 1.1 2.7 4.3 7.8 8.6 - - - - 

Vermelhinho 1.0 1.0 1.1 1.8 2.8 4.0 6.4 7.1 8.4 8.7 - 

Mean disease severity, based on the use of a scale from 1 to 9, according to the methodology proposed by 

Pastor-Corrales (1992). 

 

CLASSIFIER BY ARTIFICIAL NEURAL 

NETWORKS 

Two types of ANNs were trained: with 

one and two intermediate layers. For each type of 

ANN, at each combination of the five input 

vectors, 25 different architectures were trained. 

There were 31 combinations of the five input 

vectors, with no repetition of input vectors in the 

same combination. Thus, for each type of ANN, 

775 different architectures were trained. The best 

ANN was the one that statistically presented the 

highest value of the Kappa coefficient by the Z test. 

There was no significant difference between the 

Kappa values for the 100 best ANNs. There were 

31 combinations, without repetition, of the five 

input variables. Among the 100 ANNs, with two 

hidden layers, which presented the highest values 

of the Kappa coefficient, with values ranging from 

34.2% to 44.4%, the highest frequencies occurred 

for the scores of the blue, red and near infrared 

bands (Table 6). 
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Table 6. Frequencies with which the scores of each spectral band contributed to each combination of ANN 

input variables with two intermediate layers 

Spectral bands Frequency 

Blue 21 

Green 11 

Red 32 

Red edge 10 

Near infrared 26 

 

For the top 100 RNAs with a middle layer. 

The highest frequencies occurred for the scores in 

the blue, red and near infrared bands. Among the 

100 ANNs that presented the highest values of the 

Kappa coefficient, ranging from 33.7% to 41.4%, 

the results in the classification were better than 

those at random by the Z test at 5% significance. 

The highest frequencies occurred for the scores in 

the blue, red and near infrared bands (Table 7). 

 

Table 7. Frequencies with which the scores of each spectral band contributed to each combination of ANN 

input variables with an intermediate layer 

Spectral bands Frequency 

Blue 26 

Green 8 

Red 30 

Red edge 12 

Near infrared 24 

 

The scores of the spectral bands with the 

highest frequencies were blue, red and near 

infrared (Tables 6 and 7). The blue and red bands 

are part of the visible region of the electromagnetic 

spectrum. The relevance of these bands can be 

justified by the fact that pathogens cause 

deterioration of photosynthetic organelles, such as 

chloroplasts, reducing the amount of pigments 

involved in the photosynthesis process. Chlorotic 

lesions and necrosis on the leaf surface affect 

reflectance in the visible spectral region. A 

decrease in the concentration of chlorophyll in the 

leaf causes an increase in the reflectance value in 

the red spectral region [28]. In the near-infrared 

spectral band there is little absorption of 

electromagnetic radiation and considerable internal 

scattering due to the interaction of incident energy 

with the internal structure of the sheet. Infected 

leaves showed an increase in reflectance values, 

due to the reduction in the amount of biomass, due 

to the pathogen attack. In general, the more gaps 

the internal leaf structure, the greater the 

reflectance [16]. 

ANNs that used six IVs, obtained from 

simulated hyperspectral and multispectral data, as 

input variables were also trained (Table 2). Two 

types of ANNs were trained: with one and two 

intermediate layers. For each type of ANN, at each 

combination of the six input vectors, 25 different 

architectures were trained. There were 63 

combinations of the six input vectors, with no 

repetition of input vectors in the same combination. 

In this way, for each type of ANN, 1,575 different 

architectures were trained. The best ANN was the 

one that statistically presented the highest value of 

the Kappa coefficient by the Z test. Also, there was 

no significant difference between the Kappa values 

for the 100 best ANNs. The highest frequencies 

occurred for the IV DVI, indicating that the DVI 

was the most sensitive index to detect changes in 

the reflectance of infected leaves (Table 8). 

 

Table 8. Frequencies with which each hyperspectral IV contributed to each combination of ANN input variables 

with two intermediate layers 

Hyperspectral vegetation 

indices 

Frequency 

NDVI 24 

GNDVI 9 

MCARI 9 

TCARI 7 

DVI 33 

RDVI 18 
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NDVI = vegetation index by normalized 

difference; GNVDI = normalized green difference 

vegetation index; MCARI = modified chlorophyll 

absorption index; TCARI = transformed 

chlorophyll absorption index; DVI = vegetation 

difference index; RDVI = relative difference 

vegetation index. 

 

There were 63 combinations, without 

repetition, of the six IV obtained from 

hyperspectral data for classifiers with a hidden 

layer. Among the 100 ANNs with the highest 

Kappa coefficient values, for ANNs with an 

intermediate layer, the highest frequencies occurred 

for IV DVI (Table 9). 

 

Table 9. Frequencies with which each hyperspectral IV contributed to each combination of ANN input variables 

with an intermediate layer 

Hyperspectral vegetation 

indices 

Frequency 

NDVI 20 

GNDVI 7 

MCARI 9 

TCARI 10 

DVI 37 

RDVI 17 

 

NDVI = vegetation index by normalized 

difference; GNVDI = normalized green difference 

vegetation index; MCARI = modified chlorophyll 

absorption index; TCARI = transformed 

chlorophyll absorption index; DVI = vegetation 

difference index; RDVI = relative difference 

vegetation index. 

 

In the 63 combinations, without repetition, 

of the six IV obtained from multispectral data. 

Among the top 100 ANNs, with two intermediate 

layers, the highest frequencies occurred for DVI 

(Table 10). The DVI vegetation index was the most 

representative for the classification of anthracnose, 

as it was present in all combinations of input 

variables, both for hyperspectral IR and for 

multispectral IR (Tables 8, 9, 10 and 11).

 

Table 10. Frequencies with which each multispectral IR contributed to each combination of ANN input 

variables with two intermediate layers 

Multispectral vegetation 

indices 

Frequency 

NDVI 21 

GNDVI 8 

MCARI 8 

TCARI 9 

DVI 38 

RDVI 16 

 

NDVI = vegetation index by normalized 

difference; GNVDI = normalized green difference 

vegetation index; MCARI = modified chlorophyll 

absorption index; TCARI = transformed 

chlorophyll absorption index; DVI = vegetation 

difference index; RDVI = relative difference 

vegetation index. 

The DVI is the difference between the 

reflectances of the near-infrared and red bands. The 

red band (630-685 nm) is part of the visible 

spectrum, it is directly related to the variation in the 

spectral response of the leaf due to the variation in 

the content of organelles, such as chloroplasts. 

Chlorophyll is located inside the chloroplasts; the 

relevance of this band can also be justified by the 

fact that pathogens cause a reduction in the 

chlorophyll content in the plant due to necrosis or 

chlorotic lesions [6][1]. The near infrared band 

(760 to 850 nm) is a spectral range that indicates 

stress in plants. Variation in the spectral response 

of this band is due to variations in the physical 

structure of the plant, such as a decrease in biomass 

and water content [1]. Chloroplasts use water to 

carry out photosynthesis and the anthracnose 

pathogens cause a reduction in the content of these 

organelles, with a reduction in the water content in 

the leaves, causing a change in the spectral 

response of the infected leaf. 
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The DVI was the vegetation index with 

the highest frequency for both hyperspectral and 

multispectral data, proving to be more sensitive in 

the discrimination of anthracnose. 

 

Table 11. Frequencies with which each multispectral IR contributed to each combination of ANN input 

variables with an intermediate layer 

Multispectral vegetation indices Frequency 

NDVI 16 

GNDVI 9 

MCARI 12 

TCARI 10 

DVI 41 

RDVI 12 

 

NDVI = vegetation index by normalized 

difference; GNVDI = normalized green difference 

vegetation index; MCARI = modified chlorophyll 

absorption index; TCARI = transformed 

chlorophyll absorption index; DVI = vegetation 

difference index; RDVI = relative difference 

vegetation index. 

There was no significant difference 

between the values of the Kappa coefficients for 

ANNs using as input vectors the values of scores of 

the spectral bands (Kappa values ranging from 

33.7% to 41.4%,), hyperspectral IV (Kappa values 

ranging from 30.1% to 42.9%,) and multispectral 

IR (Kappa values ranging from 31.9% to 44.2%). 

Multispectral data have few spectral bands, 

characterizing a simpler system compared to 

hyperspectral data. Since smaller ANNs generalize 

better, the neural network using multispectral data 

with 1 input variable (the DVI), a hidden layer with 

2 neurons, being simpler, was used to discriminate 

between healthy leaves and those infected with 

anthracnose. The best ANN, for multispectral data, 

presented architecture 1 – 2 – 2, used the DVI 

vegetation index as input vector and obtained a 

Kappa coefficient of 32%. A better analysis of this 

ANN can be done using its confusion matrix (Table 

12). 

 

Table 12. Confusion matrix with Kappa coefficient, producer accuracy and global accuracy, obtained with the 

ANN test sample, for multispectral data 

 Diseased leaves Healthy leaves Kappa (%) Overall accuracy (%) 

Diseased leaves 340 78 

32 79 
Healthy leaves 20 36 

Producer 

accuracy(%) 

94 32 

 

To verify whether the selected ANN had a 

better classification than the random one, the Z test 

was applied (Table 13). The calculated Z value 

(Zc) for this ANN was greater than the tabulated Z 

value at 5% significance (Zt = 1.96), indicating that 

the ANN classification was better than a random 

classification. 

 

Table 13. Kappa coefficient, calculated Z (Zc) and variance values for the ANN architecture trained with data 

and multispectrals as input vectors 

Data Types Multispectral 

ANN architecture 1 – 2 – 2  

Kappa (%) 32 

Variance 0,0033 

Zc 5,48 

 

EARLY DETECTION OF ANTHRACNOSE 

Leaf spectral data proved to be useful in 

detecting diseases in common bean plants. Based 

on the results obtained in this work, it was 

demonstrated that the early discrimination of 

anthracnose in common bean was possible. The 

disease was detected one day after the inoculation 

of the pathogen with Global Accuracy of 67%, 

77% and 64%, in the cultivars Rudá, RBS Supremo 

and Vermelhinho, respectively, three days before 

the first characteristic symptoms of the disease 

became visible, not importing the level of 
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concentration of conidia mL- 1 (Table 9). Results 

similar to those found by other researchers using 

fungal diseases in beet plants [2][3][20]. The 

results showed that there was no advantage in using 

the score values of the five proposed spectral 

bands, nor the IV of hyperspectral data, as input 

variables of the classifier. The values of the Kappa 

coefficients for the classifiers were statistically 

equal. The input variable for the best classifier was 

the IV DVI obtained from multispectral data. 

 

Table 9. Results, in percentage, of the classification of diseased and healthy leaves according to the day after 

inoculation (DAI), for ANN with architecture 1 – 2 – 2, using the multispectral DVI vegetation index as an input 

variable 

Cultivars Classes 
DAI 

1 2 3 4 5 6 7 8 9 10 

Rudá 

D.L. 72 77 82 88 100 92 97 90 - - 

H.L. 54 46 54 50 29 59 59 79 - - 

Kappa 24 22 36 41 37 54 62 68 - - 

O.A. 67 68 74 77 80 83 87 79 - - 

RBS 

Supremo 

D.L. 90 93 97 92 98 88 85 - - - 

H.L. 46 38 28 58 78 75 83 - - - 

Kappa 39 36 31 53 75 63 64 - - - 

O.A. 77 77 81 82 91 85 84 - - - 

Vermelhi

nho 

D.L. 73 78 85 92 93 98 100 97 95 90 

H.L. 42 38 41 46 46 54 58 67 79 88 

Kappa 15 16 28 42 44 60 67 68 76 75 

O.A. 64 67 73 79 80 86 88 88 90 89 

DVI = vegetation difference index; D.L. = diseased leaves; H.L. = healthy leaves; O.A. = overall accuracy. 

 

IV. CONCLUSIONS 
The vegetation difference index (DVI) 

proved to be more efficient in capturing the total 

variance of reflectance data from leaves infected 

with anthracnose. 

The results of this work indicated that 

vegetation indices obtained from hyperspectral data 

did not provide significant improvement in leaf 

classification, when compared with IV from 

multispectral data. 

The RNA classifier proposed in this work 

is effective in detecting anthracnose in common 

bean leaves at early stages of infection. At all three 

levels of conidial concentrations mL
-1

, the classifier 

achieved good results in discriminating infected 

leaves on the first day after pathogen inoculation, 

three days before the first symptoms of anthracnose 

became visible. 
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